
How do you prove #1/(1+sin) + 1/(1-sin) = 2sec^2# - Socratic
2016年2月5日 · To prove trig identity either manipulate the left side into the form of the right side or the right side into the form of the left side or manipulate both sides together until they agree.
How do you verify (1-sin)/(1+sin) = (sec-tan)^2? - Socratic
2016年10月12日 · #(1-sinx)/(1+sinx) = (secx-tanx)^2# Left Side: #=(1-sinx)/(1+sinx) # #=(1-sinx)/(1+sinx) * (1-sinx)/(1-sinx) # #=(1-2sinx+sin^2x)/(1-sin^2x)#
How do you find the derivative of 1/sinx? - Socratic
2016年11月10日 · d/dx (1/sinx)= -cotx cscx There are several methods to do this: Let y= 1/sinx (=cscx) Method 1 - Chain Rule Rearrange as y=(sinx)^-1 and use the chain rule: { ("Let ...
How do you simplify #1/(1+sin x) + 1/(1-sin x)#? - Socratic
2015年4月16日 · Let's say your expression is called E. First, multiply the first fraction by "1-sinx" and the second by "1+sinx" E = (1-sinx)/((1+sinx) * (1-sinx)) + (1+sinx)/((1 ...
How do you verify # (1+sinx)/(1-sinx) - (1-sinx)/(1+sinx ... - Socratic
2015年11月1日 · See explanation. [1]" "(1+sinx)/(1-sinx)-(1-sinx)/(1+sinx) Combine the two terms by making them have the same denominator.
How do you find the exact length of the polar curve r=1+sin
2015年1月20日 · #1+sin theta# has period #T=2pi# (the function can be obtained as a vertical translation of the sine function in the plane of coordinates #(theta,r)#). The length of a periodic …
How do you prove #cos(x) / (1-sin(x)) = sec(x) + tan(x)#? - Socratic
2018年3月17日 · We have, #cosx/(1-sinx)#, #=cosx/(1-sinx)xx1#, #=cosx/(1-sinx)xx(1+sinx)/(1+sinx)#, #={cosx(1+sinx)}/{1-sin^2x)#,
How do you solve cos^2(x)+sin=1? - Socratic
2016年2月29日 · How do you find all the solutions for #2 \sin^2 \frac{x}{4}-3 \cos \frac{x}{4} = 0# over the
How do you simplify #sin(tan^-1(x))#? - Socratic
2015年10月17日 · We can use the principles of "SOH-CAH-TOA". First, let's call #sin(tan^-1(x))=sin(theta)# where the angle #theta=tan^-1(x)#.
Prove that, #(1+sintheta-costheta)^2/(1+sintheta+costheta)^2
2018年6月11日 · We know that, #color(red)((1)(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca# #color(blue)((2)(a+b-c)^2=a^2+b^2+c^2+2ab- 2bc-2ca#