【新智元导读】谷歌提出了多智能体协作的新方法「智能体链」(Chain-of-Agents),超越传统方法,多个任务高出10%的性能,特别是处理长文本相较于基线提升高达100%。甚至无需训练,可与多种LLM模型协同工作。
近日,谷歌在博客中介绍了「智能体链」(Chain-of-Agents,CoA)框架,无需训练、任务无关且高度可解释。它通过大语言模型(LLM)间的协作来解决长上下文任务,在性能上超越了RAG和长上下文 LLM。
新智元报道 编辑:KingHZ Aeneas【新智元导读】ETH Zurich等机构提出了推理语言模型(RLM)蓝图,超越LLM局限,更接近AGI,有望人人可用o3这类强推理模型。推理语言模型(Reasoning Language ...
在NeurIPS的Latent Space非官方Industry Track上,Ai2研究科学家Nathan Lambert发表相关演讲,直接回答语言模型能否推理,以及o1和强化微调 (RFT) API给大家的启发。 Nathan Lambert在Interconnects上发文表示: ...
作为系统工程师强答一下。 我认为从模型的核心能力来说主要是三个点,推理能力(Reasoning),上下文能力(Context),多模态(Multi-Modal)。 Reasoning ...
苹果公司的AI研究团队发表了一篇题为“Understanding the Limitations of Large Language Models in Mathematical Reasoning”的论文,揭示了大型语言模型(LLM)在数学 ...
通过构建有向无环图DAG来表示任务之间的依赖关系,LLM Compiler能够实现任务的并行执行,从而大幅降低总执行时间。本文将详细介绍LLM Compiler的原理 ...